pycommunicate Documentation
Release 0.0.7

mincrmatti2

June 12, 2016

Tutorial

1 What is pycommunicate? 1
2 Example 3
2.1 Gettingupand running oL e 4
2.2 How pycommunicate WOrks i e e e e e 4
2.3 Creating your first pycommunicate app . . . « « « v v v v v e et e e e e e e e e e e e e e e e 5
2.4 Sprinkling in some server-side stuff L. oL L o 7
2.5 CommuniCateADPD .« « v v v o e 13
2.6 Controller and ControllerFactory e 14
Python Module Index 17

CHAPTER 1

What is pycommunicate?

pycommunicate is a python web-server library designed to make server-heavy webapps easy!

In other words, this library is similar to others (in fact it wraps flask to work), but with one very amazing difference:
you can modify the dom from the server

You can attach events to elements, change properties, and much more!

Want to get started? Well you’re in the right place, because this is the documentation! :)

pycommunicate Documentation, Release 0.0.7

2 Chapter 1. What is pycommunicate?

21

22

23

24

25

26

27

28

29

31

32

34

35

37

CHAPTER 2

Example

This is code from examples/hello.py found in the docs folder.

mwn

hello.py:

Using the pycommunicate framework to serve a static webpage, as well as show internal 1id
session variables.

Because the returned value does not load the js libs, the socketio connection is not stg

numbers. It

rted. This me

none of the apis will work nor will load ever be called. Again, this is a very simple de¢mo.

WARNING: DO NOT ACTUALLY SHOW THE USER ID TO A USER!!

mwn

from pycommunicate.server.app.communicate import CommunicateApp
from pycommunicate.server.bases.controller import ControllerFactory
from pycommunicate.server.bases.views import View

class HelloView (View) :
def render (self):
if 'count' in self.controller.user.session:

self.controller.user.session|['count'] += 1
else:
self.controller.user.session['count'] = 1
return ("Hello World! My user id is {}, and my request id is {}. The session say
" times") .format (

self.controller.user.id_,
self.controller.user.request_id,
self.controller.user.session['count'])

app = CommunicateApp ()
controller = ControllerFactory () .add_view(HelloView) .set_default_view (HelloView)

app.add_controller ("/", controller)

app.set_secret_key ("secret!!!™)

rs you have r¢

app.run()

pycommunicate Documentation, Release 0.0.7

2.1 Getting up and running

Contents

» Getting up and running
— Installing pycommunicate

2.1.1 Installing pycommunicate

Alright, first things first: get the library
If you don’t have pip, go get it using get-pip.py.

Then, in a correctly elevated terminal run:

‘pip install pycommunicate ‘

If you run windows, you may need to use:

‘python -m pip install pycommunicate ‘

Both will do the same thing.

That’s it! You have now installed pycommunicate and are ready to proceed to the next step!

2.2 How pycommunicate works

Before we can start writing code, let’s get some terms and stuff out of the way:
controller A collection of views that manages one specific route. Can be thought of as a ‘page’

view One page option for a controller, the bulk of ui code and the render function resides here. Can be thought of as
a ‘sub-page’

request A unique request for a controller.
app An instance of CommunicateApp. This is the main thing inside pycommunicate based webapps.

Now lets explain them in a bit more detail:

2.2.1 Controller

A controller is probably not what you think it is, as this does not follow MVC. Instead, controllers are used to hold
many views, which actually deal with the page. Controller do, however, contain the controller session, which is one
of many sessions in pycommunicate. This one remains across any given request.

Controllers are not created by you, though. They are created by pycommunicate itself, you only define one. For
this you use ControllerFactory. You can subclass both Controller and ControllerFactory to create your own custom
behaviour, however.

4 Chapter 2. Example

https://bootstrap.pypa.io/get-pip.py

pycommunicate Documentation, Release 0.0.7

2.2.2 View
Views probably contain the bulk of your code. They are responsible for serving up a page, handling events in a page,
and much more. Because of this, views are subclassed from the base View class.

OK, I promise in the next part we can start actually programming something!

2.3 Creating your first pycommunicate app

Alright, now we can actually start.
The tutorial project will be quite simple:
 will serve up a todo-file
* will allow adding and removing of entries to it

As you can see, this will be very simple, but using other libraries might require lots of ajax processing. In pycommu-
nicate, none of this is needed!

Let’s get started by making the simplest example: serving up a static page.

2.3.1 Setting up our app

Let’s start by making an empty directory called tutorial somewhere on your system. Inside this directory should be one
file and one folder: main.py and templates. We’ll get back to templates in a second, but for now let’s make main.py.

2.3.2 Making our page

First of all, let’s create a simple page for our app in html. Some of it might not make sense right now, but just roll with
it. For now just put this into templates/home.html:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Tutorial Checklist</title>
{{ add_includes () }}
</head>
<body>
<hl>Welcome to the TODO!</hl>
<div id="todo">
<p id="loadingBar">Please wait... loading todos</p>
</div>

<input type="text" id="next" /><button id="add">Add</button>
</body>
</html>

2.3.3 Serving up the page statically

First of all, we will need a pycommunicate.server.app.communicate.CommunicateApp instance be-
fore we even start writing anything, so lets add that now to main.py, and while we’re at it, lets import everything we’ll
need:

2.3. Creating your first pycommunicate app 5

pycommunicate Documentation, Release 0.0.7

import eventlet

from pycommunicate.server.bases.views import View

from pycommunicate.server.bases.controller import ControllerFactory
from pycommunicate.server.app.communicate import CommunicateApp

app = CommunicatelApp() # main app instance

Now, lets create a view called TodoView, and have it display the content inside home.html.

class TodoView (View) :
def render (self):
return self.controller.templater.render ("home.html")

Alright, let’s break this down:

class TodoView (View) :

This defines our view, as all views are subclasses of View, from pycommunicate.server.bases.views

Next, we have the render() method. This is called to get the base page to serve when requested. It is the only
thing you actually have to override. Views have references to their parent controllers, which have Templaters. A
pycommunicate.templating.Templater will render a template, the default location is templates/, but this
can be changed. See pycommunicate. server.app.communicate.CommunicateApp for how to change
it.

Note: The templater, and all of pycommunicate use jinja2, a templating engine. For more info on what we provide in
jinja2, and how to use the templater, go look at its page.

Anyways, now that we have a view, we should create a controller:

controller = ControllerFactory().add_view(TodoView) .set_default_view (TodoView)
app.add_controller('/', controller)

This one is pretty simple, we create a ControllerFactory and call its methods (which are chainable) to add the
TodoView view, and set it as the default (initial) one.

We’re almost done, now, and all we have to add is the secret key and the call to run.

Danger: Remember, the secret key must be kept secret. For a truly random secret key, use os.urandom()

app.set_secret_key ('secret!')
app.run{()

And that’s it! You should be able to simply run it and see a static, lifeless page. On the next page, we’ll get to adding
some event handlers. Here’s the full source right now for copying:

import eventlet

from pycommunicate.server.bases.views import View

from pycommunicate.server.bases.controller import ControllerFactory
from pycommunicate.server.app.communicate import CommunicateApp

app = CommunicateApp ()

class TodoView (View) :
def render (self):

6 Chapter 2. Example

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

pycommunicate Documentation, Release 0.0.7

return self.controller.templater.render ("home.html™)

controller = ControllerFactory().add_view(TodoView) .set_default_view (TodoView)
app.add_controller("/", controller)

app.set_secret_key ("secret!")
app.run()

2.4 Sprinkling in some server-side stuff

Alright, now that we’ve got a page working, let’s add some functionality.

Before we do that, though, add this class to the main.py file. It contains some multithreading and fileio stuff to make
it easy to add and remove tasks.

class TodoReader:
def _ init_ (self):
self.todos = {}
self.last_todo = 0
try:
with open('todo.txt', 'r') as old:
for i, line in enumerate (old.readlines()):
self.todos[i] = line
self.last_todo = max(self.last_todo, 1)
except IOError:

pass
self.add_queue = eventlet.queue.Queue ()
self.adds = {}
self.remove_queue = eventlet.queue.Queue ()

def add_daemon (self):
while True:
add = self.add_qgqueue.get ()

self.todos([self.last_todo + 1] = add
self.adds[add] .put (self.last_todo + 1)
self.last_todo += 1

with open('todo.txt', 'w') as new:
for index in self.todos:
new.write(self.todos[index] + ("\n" if not self.todos[index] .endswif

def del_daemon(self):
while True:
d = self.remove_queue.get ()

del self.todos[d]
self.last_todo = 0
for i in self.todos:
self.last_todo = max(self.last_todo, 1)

with open('todo.txt', 'w') as new:
for index in self.todos:
new.write(self.todos[index] + ("\n" if not self.todos[index] .endswif

2.4. Sprinkling in some server-side stuff 7

h("\n")

h("\n")

else

else

41
2
43
44
45
46
47
48
49

50

52

53

55

56

pycommunicate Documentation, Release 0.0.7

def start (self):
pool = eventlet.greenpool.GreenPool (2)
pool.spawn_n (self.add_daemon)
pool.spawn_n (self.del_daemon)

def add(self, text):
self.add_queue.put (text)
self.adds[text] = eventlet.queue.Queue ()

def wait_on(self, text):
ind = self.adds[text].get ()
del self.adds[text]
return ind

def remove (self, index):
self.remove_queue.put (index)

This should go somewhere after the creation of app instance

After that, but before the view code, add this to properly initialize it:

todo = TodoReader ()
todo.start ()

Alright, so now we have a variable called t odo that manages... todos!

2.4.1 Showing the current todos and removing them

At the heart of server-side DOM manipulation in pycommunicate is HTMLWrapper. For all of the methods it
supports, go look at it, but the one we will be using is element_by_selector (). This method will return a
ElementWrapper tracked to follow the selector given. This can then be used to modify the DOM.

Add a load() method

When a user loads a page with the pycommunicate libraries installed, as soon as document . ready () occurs client-
side, the library will connect to the server and when the server finishes initializing the connection, the active view’s
load () method is called.

Let’s create this method and add some code to it after the render () method:

def load(self):
todo_div = self.html_wrapper.element_by_selector ("#todo")

loading_message = self.html_wrapper.element_by_selector ("#loadingBar")
loading_message.delete ()

for index in todo.todos:
text = todo.todos[index]

todo_page_div = todo_div.append_element_inside_self ("div", "todo{}".format (index
text_p = todo_page_div.append_element_inside_self ("p", "todoText{}".format (index

text_p.content.set (text)
button = todo_page_div.append_element_inside_self ("button", "todoRemove{}".formg
button.add_event_listener ("click", self.make_handler (index))
button.content.set ("Remove™)

After doing this, if you are using an IDE, it will complain about self.make_handler not existing, so make that too:

8 Chapter 2. Example

t (index))

pycommunicate Documentation, Release 0.0.7

def make_handler (self, index):
def handler () :
todo.remove (index)

todo_div = self.html_wrapper.element_by_selector ("#todo{}".format (index))
todo_div.delete ()
return handler

Alright, so lets explain what’s actually happening there

What’s going on in the load() function ?!

Alright, let’s do this bit by bit:

‘todo_div = self.html_wrapper.element_by_selector ("#todo")

The first part is probably self-explanatory to all python programmers, so let’s explain that call. As I said earlier the
element_by_selector () method returns a ElementWrapper. In this case, it is tracking the first thing with
an id of todo. In our html file, that points to the <div>. So this call will set todo_div equal to something that
represents... the todo div!

loading_message = self.html_wrapper.element_by_selector ("#loadingBar")
loading_message.delete ()

The first line does similar things to the example above, so lets explain the second line. It calls loading_message‘s
delete () method, which deletes the element. This effectively clears the “Loading...” message from the page.

for index in todo.todos:
text = todo.todos[index]
todo_page_div = todo_div.append_element_inside_self ("div", "todo{}".format (index))
text_p = todo_page_div.append_element_inside_self ("p", "todoText{}".format (index))
text_p.content.set (text)

So the loop goes through every todo in the TodoReader. This class uses ids and a dictionary to store todos, so we
loop through the keys, which are the indices.

Note: Although I could of used a list, this seemed easier to implement and keep track for removing entries, so I used
a dictionary.

For each todo, get its text and store it in text. Then, use the element creation function
append_element_inside_self () to create and get a <div> element with id todo{index} inside
the todo_div. The next call is very similar, only calling it on todo_page_div and using it to create a <p>
element with id todoText {index} instead.

The content attribute is a wrapper for innerText, which can be used to get or set the text of an element. We use
this to change the text of the new <p> element to the text of the todo.

Warning: The get functions of element properties block until the property is received, while the set() functions
return as soon as the change is submitted to be sent. This means that calls to set() and then immediately after get()
can return the wrong values. This will probably be changed in a later version, or an option added to block on the
set() call.

button = todo_page_div.append_element_inside_self ("button", "todoRemove{}".format (index)
button.add_event_listener ("click", self.make_handler (index))
button.content.set ("Remove")

2.4. Sprinkling in some server-side stuff 9

pycommunicate Documentation, Release 0.0.7

Line 12 and 14 use already explained functions, so I'll detail the add_event_1listener () method instead. This
method will attach an event to a js event. These are using the chrome and firefox names, not the IE ones. We use it
here to attach the button’s click method to a dynamically generated event handler setup to destroy the todo server-side,
and then use ElementWrapper.delete () to remove it from the client-side.

2.4.2 Adding todos

Add code to the load() method

To do this, you need to add the following lines at the end of 1oad () :

add_button = self.html_wrapper.element_by_selector ("#add")
add_button.add_event_listener ("click", self.add_handler)

I’ve already explained above what this does, so let’s go create that add_handler event handler.

The add_handler method

The add_handler method will deal with when the user clicks the “Add” button. Here’s the code in it:

text = "- " + self.html_wrapper.element_by_selector ("#next") .get_property("value")
todo.add (text)
self.html_wrapper.element_by_selector ("#next") .set_property ("value", "")

index = todo.wait_on (text)
todo_div = self.html_wrapper.element_by_selector ("#todo")

todo_page_div = todo_div.append_element_inside_self ("div", "todo{}".format (index))
text_p = todo_page_div.append_element_inside_self ("p", "todoText{}".format (index))
text_p.content.set (text)

button = todo_page_div.append_element_inside_self ("button", "todoRemove{}".format (index)
button.add_event_listener ("click", self.make_handler (index))

button.content.set ("Remove™)

Lines 5-11 are simply copied from the 1oad () function, so look there for info on what these do.

Again, I'll go line by line.

text = "- " + self.html_wrapper.element_by_selector ("#next") .get_property ("value")

This will set text to “- ” plus whatever is in the input field. The get_property () method will return whatever the
JS element defined by the ElementWrapper has for that name. The value property contains the content of the
input field.

Line 3 simply empties it using set_property ().

Lines 2 and 4 use the TodoReader to add and retrieve the index for the new entry, and the rest is just as above.

2.4.3 Putting it all together

Your main.py file should now look like this:

import eventlet

from pycommunicate.server.bases.views import View
from pycommunicate.server.bases.controller import ControllerFactory
from pycommunicate.server.app.communicate import CommunicateApp

10 Chapter 2. Example

20

21

22

23

24

25

26

27

28

29

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

55

56

58

59

60

61

62

63

64

pycommunicate Documentation, Release 0.0.7

app = CommunicateApp ()

This class uses some greenlet things and is beyond the scope of this tutorial

class TodoReader:
def _ init__ (self):
self.todos = {}
self.last_todo = 0
try:
with open('todo.txt', 'r') as old:
for i, line in enumerate (old.readlines()):
self.todos[i] = line
self.last_todo = max(self.last_todo, i)
except IOError:
pass
self.add_queue = eventlet.queue.Queue ()
self.adds = {}
self.remove_queue = eventlet.gueue.Queue ()

def add_daemon (self):
while True:
add = self.add_gueue.get ()

self.todos[self.last_todo + 1] = add
self.adds[add] .put (self.last_todo + 1)
self.last_todo += 1

with open('todo.txt', 'w') as new:
for index in self.todos:
new.write(self.todos[index] + ("\n" if not self.todos[index] .endswif

def del_daemon(self):
while True:
d = self.remove_queue.get ()

del self.todos[d]
self.last_todo = 0
for i in self.todos:
self.last_todo = max(self.last_todo, 1)

with open('todo.txt', 'w') as new:
for index in self.todos:
new.write (self.todos[index] + ("\n" if not self.todos[index] .endswif

def start (self):
pool = eventlet.greenpool.GreenPool (2)
pool.spawn_n (self.add_daemon)
pool.spawn_n(self.del_daemon)

def add(self, text):
self.add_queue.put (text)
self.adds[text] = eventlet.queue.Queue ()

def wait_on(self, text):
ind = self.adds[text].get ()
del self.adds[text]
return ind

2.4. Sprinkling in some server-side stuff 11

h("\n")

h("\n")

else

else

pycommunicate Documentation, Release 0.0.7

65

66 def remove (self, index):

67 self.remove_queue.put (index)

68

6 |todo = TodoReader ()

0 |todo.start () # start up the TodoReader.

71

72

73 | class TodoView (View) :

74 def render (self):

75 return self.controller.templater.render ("home.html")

76

77 def make_handler (self, index):

78 def handler():

79 todo.remove (index)

80

81 todo_div = self.html_wrapper.element_by_selector ("#todo{}".format (index))

82 todo_div.delete ()

83 return handler

84

85 def add_handler (self):

86 text = "- " + self.html_wrapper.element_by_selector ("#next") .get_property ("valug")
87 todo.add (text)

88 self.html_wrapper.element_by_selector ("#next") .set_property ("value", "")

89 index = todo.walt_on (text)

90 todo_div = self.html_wrapper.element_by_selector ("#todo")

91 todo_page_div = todo_div.append_element_inside_self ("div", "todo{}".format (index))
9% text_p = todo_page_div.append_element_inside_self ("p", "todoText{}".format (index))
93 text_p.content.set (text)

94 button = todo_page_div.append_element_inside_self ("button", "todoRemove{}".format (index))
95 button.add_event_listener ("click", self.make_handler (index))

96 button.content.set ("Remove")

97

98 def load(self):

99 # add existing todos:

100 todo_div = self.html_wrapper.element_by_selector ("#todo")

101

102 loading_message = self.html_wrapper.element_by_selector ("#loadingBar")

103 loading_message.delete ()

104

105 for index in todo.todos:

106 text = todo.todos[index]

107 todo_page_div = todo_div.append_element_inside_self ("div", "todo{}".format (index))
108 text_p = todo_page_div.append_element_inside_self ("p", "todoText{}".format (index))
109 text_p.content.set (text)

110 button = todo_page_div.append_element_inside_self ("button", "todoRemove{}".format (index)
111 button.add_event_listener ("click", self.make_handler (index))

112 button.content.set ("Remove")

113

114 add_button = self.html_wrapper.element_by_selector ("#add")

115 add_button.add_event_listener ("click", self.add_handler)

116

17 | controller = ControllerFactory () .add_view (TodoView) .set_default_view (TodoView)

us | app.add_controller("/", controller)

119

120 | app.set_secret_key ("todo_secrets!")

121 app.run ()

122

12 Chapter 2. Example

pycommunicate Documentation, Release 0.0.7

If it looks like that (give or take some whitespace or comments) then you’re good to go! Simply run it and connect to
it with the link in the console and watch your creation work!!

This is the end of the tutorial, but I'm sure you could do other stuff with this if you want.

2.5 CommunicateApp

class pycommunicate.server.app.communicate.CommunicateApp (self, web_port=8080,
host="localhost’, de-

bug=False, maxi-
mum_handler_threads=10000,
tem-
plate_directory="templates”)
This is the main app instance, used to create and run a pycommunicate server. Its arguments are for configuration

Parameters
* web_port (int)— The port to host the server on
* host (str)— The hostname to host on
* debug (bool)— Run with the debug server, never user in production

* maximum_handler_threads (int) - The size of the handler event pool. This may be
removed in the future

* template_directory (str)— Relative path to the templates

set_secret_key (key)
Sets the internal secret key

Danger: The secret key must be kept secret, for a truly random key use os . urandom ()

Parameters key (str)— The new secret key

add_controller (route, controller)
Associates a ControllerFactory with a route.

Warning: Any route starting with ___pycommunicate/ will not work, as this path is reserved for
pycommunicate’s internal routes.

Tip: Routes can contain variable parts, indicated like this: <name> where name is some name. You can
also use integers, for that use <int :name>.

Parameters
e route (str) - The route

e controller (pycommunicate.server.bases.controller.ControllerFactory)
— The controller factory to associate with the route

add_error handler (code, controller)
Associates a ControllerFactory with an HTTP error code

Parameters

* code (int) - The error code

2.5. CommunicateApp 13

pycommunicate Documentation, Release 0.0.7

* controller (pycommunicate.server.bases.controller.ControllerFactory)
— The controller factory to associate the code with

New in version 0.0.7.

run ()
Run the server, and block the current thread.

2.6 Controller and ControllerFactory

class pycommunicate.server.bases.controller.ControllerFactory
This class is used to define how a Controller should be created. Its methods are all chainable, or in other
words, all return the instance. The constructor has no arguments

add_view (view)
Adds a py:class:~pycommunicate.server.bases.views. View to the controller factory’s view list.

Warning: Adding the same view twice can cause issues

Parameters view (pycommunicate.server.bases.views.View) — The view class
to add

set_default_view (view)
Sets the default view for the controller factory. The default view is the one that is shown initially.

Warning: The client will crash with a 500 server error if this is not set.

Parameters view (pycommunicate.server.bases.views.View) — The view class
to set as default.

with_before_connect (before_connect)
Sets the before_connect function. This is called as soon as a request comes in for the page, and should be
used to do something before a page loads.

before_connect takes one argument, an instance of CallCTX. This CallCTX contains one function,
abort, which when called will interrupt the request and send back the error code passed to it.

Parameters before_connect (function) — The before_connect function. See above for
signature

class pycommunicate.server.bases.controller.Controller
The Controller class handles one url, or route. It contains multiple View and manages switching between them.

Warning: Do not try and create Cont roller instances on your own. Use ControllerFactory for
that instead.

route_data
This contains the values of the variable parts in the route. See add _controller () for more informa-
tion on variable route parts.

d
This is the data object, a simple dictionary that use can use to store data across multiple views. It is reset
every request, for full sessions across requests use user.session instead.

user
An instance of User of which this controller is currently servicing. Use its session attribute for proper
sessions.

14 Chapter 2. Example

pycommunicate Documentation, Release 0.0.7

special_return_handler
If this is not None, then whatever this function returns will be sent directly to flask as the response. Use
with caution.

New in version 0.0.7.

change_view (new_view_index)
Change the active view to the index provided. View indices start at 0 and increase in the order you added
them in the controller factory.

Note: This will only do anything if the page has the pycommunicate JS libraries loaded. This function
will not work from within a render () function.

Parameters new_view_index (int)— The new view index to switch to.

redirect (location)
If called from a child view’s render () function, this will change the special_return_handler to a function
that returns a redirect to the location. Otherwise, it signals the page to redirect elsewhere.

Note: This will only do anything outside of render () if the page has the pycommunicate JS libraries
loaded.

Parameters location (str)— The url to redirect to.

2.6. Controller and ControllerFactory 15

pycommunicate Documentation, Release 0.0.7

16 Chapter 2. Example

Python Module Index

pycommunicate.server.app.communicate,
13
pycommunicate.server.bases.controller,

14

17

pycommunicate Documentation, Release 0.0.7

18 Python Module Index

Index

A

add_controller() (pycommuni-
cate.server.app.communicate.Communicate App
method), 13

add_error_handler() (pycommuni-
cate.server.app.communicate.Communicate App
method), 13

add_view() (pycommuni-
cate.server.bases.controller.ControllerFactory
method), 14

C

change_view() (pycommuni-
cate.server.bases.controller.Controller method),
15

CommunicateApp (class in pycommuni-
cate.server.app.communicate), 13

Controller (class in pycommuni-
cate.server.bases.controller), 14

ControllerFactory (class in pycommuni-

cate.server.bases.controller), 14

D

d (pycommunicate.server.bases.controller.Controller at-
tribute), 14

P

pycommunicate.server.app.communicate (module), 13
pycommunicate.server.bases.controller (module), 14

R

redirect() (pycommuni-

cate.server.bases.controller.Controller method),

15

route_data (pycommuni-
cate.server.bases.controller.Controller at-

tribute), 14

S

set_default_view() (pycommuni-
cate.server.bases.controller.ControllerFactory
method), 14

set_secret_key() (pycommuni-
cate.server.app.communicate.Communicate App
method), 13

special_return_handler (pycommuni-

cate.server.bases.controller.Controller at-

tribute), 14

U

user (pycommunicate.server.bases.controller.Controller

attribute), 14

W

with_before_connect() (pycommuni-
cate.server.bases.controller.ControllerFactory
method), 14

run() (pycommunicate.server.app.communicate.Communicate App

method), 14

19

	What is pycommunicate?
	Example
	Getting up and running
	How pycommunicate works
	Creating your first pycommunicate app
	Sprinkling in some server-side stuff
	CommunicateApp
	Controller and ControllerFactory

	Python Module Index

